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NONPLANAR WING  LOAD-LINE AND SLENDER WING THEORY 

By John DeYoung 
Vought Corporation Hampton Technical Center 

SUMMARY 

Nonplanar  load l ine ,   s lender  wing, e l l i p t i c  wing, and in f in i t e   a spec t  
ra t io   l imit ,   loading  theories   are   developed.  These are  quasi  two-dimensional 
theor ies  b u t  s a t i s f y  wing hundary  condi t ions  a t   a l l   points   a long the non- 
planar  spanwise extent of the wing .  These  methods a re   app l i cab le   fo r  
generalized  configurations such as  the la teral ly   nonplanar  wing, mult iple  
nonplanar  wings, or wing w i t h  multiple  winglets  of  arbitrary  shape. Two- 
dimensional  theory  infers  simplicity which i s   p r a c t i c a l  when analyzing 
complicated  configurations. The l a t e r a l  spanwise dis t r ibut ion  of   angle  o f  
a t t ack  can be t h a t  due to   winglet  o r  control   surface  def lect ion,  wing t w i s t ,  
o r  induced  angles due t o  mul t iwings ,  multiwinglets,   ground,  walls,  j e t ,  o r  
fuselage.  In a quasi  two-dimensional  theory the induced  angles due t o  these 
extra   condi t ions  are   l ikewise determined f o r  two-dimensional  flow. 
Equations  are  developed  for the normal t o  surface  induced  velocity due t o  a 
nonplanar   t ra i l ing   vor t ic i ty   d i s t r ibu t ion .  Example application  of  these 
methods a re  made f o r  a rectangular wing with  wingtip  winglets. Compared 
w i t h  a planar w i n g ,  induced  drag i s  reduced 5, 13, 66 percent   for   aspec t   ra t ios  
of 0,  70.9, and i n f i n i t y .  The same resul ts   apply t o  a 30" swept wing w i t h  
0.29 t a p e r   r a t i o  and smaller   aspect   ra t io .  

INTRODUCTION 

Theories  for  multiplane systems and wing  endplate   theories   span  the 
his tory  of  aerodynamic  theory.   Early  analytical   solutions  are  detailed i n  
reference  1.   Theoretical  development tended to   fo l low the needs o f   a i r c r a f t  
design.  In the beginning a i r c r a f t  were multiplanes  including  biplanes 
and t r i p 1  anes. Two-dimensional a i   r f o i  1 t u n n e l  tests i n  Europe were 



t r a d i t i o n a l l y  models of  sections w i t h  endplates. These required  corrections 
from wing w i t h  endplates   to  two-dimensional sect ion  data .  In reference 2 
by solut ions i n  the  Trefftz  plane  the induced  drags  are  determined  of many 
w i n g t i p  configurations.  These  include  vertical   plates  at   various span 
s t a t ions ,   c i r cu la r  bodies., and array  of fins. Some of these w i n g t i p  
configurations were computed w i t h  electromagnetic  analogy methods. Winglet 
concepts advanced by Whitcomb are  presented i n  reference 3.  These a r e  
uniquely  designed  angled w i n g t i p  fins f o r  minimizing  induced d r a g  and 
improving t i p  f low. Reference 4 has  a chapter on nonplanar  l if t ing-surface 
theory, however, only l i f t  curve-slope  data  of a V wing and near ground 
data  are  presented. 

A recent  theoretical   parametric  study of wing winglet  configurations 
i s  made i n  reference 5. I t  i s  concluded i n  this reference t h a t  for the same 
root bending moment, a winglet  provides a grea te r  induced eff ic iency  incre-  
ment t h a n  does a t i p  extension.  This  study  provides an abundance  of winglet 
data w i t h  a  wide  range o f  geometric  values  of wing and winglet. A summary 
statement i n  reference 5 i s  'This  study  provides sweeping confirmation, for 
a wide range  of wings ,  of the recommendations  of Whitcomb i n  NASA TN D-8260'. 

The winglet  concept  has been pioneered by Richard T .  Whitcomb. 

Present day design  objectives  are t o  i n t e r f e l a t e  aerodynamics . w i t h  
s t ruc tura l  and weight cha rac t e r i s t i c s  and determine  possible improvements 
i n  aerodynamic eff ic iency.  As an example,  a  planar wing design is  
established.  This wing has a cer ta in   root  bending moment, l i f t ,  surface 
a rea ,  and induced drag .  The designer  determines  that a wing winglet 
configuration w i t h  the same bending moment, l i f t ,  and surface  area,  has 
l e s s  induced drag .  The designer may choose  a  highly  staggered  biplane 
winglet  configuration w i t h  same as   s ingle  wing structural   weight,  l i f t ,  
and surface  area,  and determines t h a t  induced d rag  i s  the same,  however, 
fuselage bending moment i s   g r e a t l y  reduced w i t h  the  staggered  biplane 
configuration. 
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Objectives of the present  study  are  to  develop  nonplanar wing  loading 
methods  which are  viable  for  taking  into  account  interference  effects 
from o the r  wings o r  from other  vortex  systems.  Nonplanar means t h a t  a 
wing  or  vortex  system extends ve r t i ca l ly   a s   we l l   a s   l a t e ra l ly .  
Because nonplanar wing theory combined w i t h  other  nonplanar  vortex  systems  can 
become ana ly t i ca l ly  complex and computationally limited, a nonplanar  load l ine 
method wil l  be developed. A planar wing load  l ine  theory is  developed i n  
reference 6. Load line theory i s  a l i f t i n g  surface  theory  confined  to a 1 ine, 
f o r   a r b i t r a r y  wing chord distribution,  quasi  two-dimensional, and so lu t ions  
r e s u l t  i n  spanwise  loading  aerodynamics b u t  no chord  loading  detail .  This 
t h e o r y   s a t i s f i e s   a l l  boundary conditions  along the span  of the wing .  Analytic- 
ally,   nonplanar  load 1 ine pr inc ip les  can be made t o  extend and expand in to  

,nonPlanar  slender w i n g  and e l l i p t i c  wing analyses  which, i n  addi t ion ,  have a 
higher order o f  di rec t   so lu t ion  uniqueness. Nonplanar wing t heo ry   s t a r t s  by 
developing  generalized  loading  integral  equations which r e l a t e  the induced 
veloci ty  normal t o  the su r face   t o  the wing loading,   or  a sum of wing  loadings 
i f  f o r  m u l t i w i n g s .  

SYMBOLS 

A aspect  ratio  of  nonplanar wing ,  h e 2 / &  

AP aspec t   ra t io  o f  planar wing ,  bp2/S 

an 9 an* Fourier   coeff ic ient  o f  spanwise  loading  along the wing,  equation 
(15) 

bP wing span of  planar wing 

CD i induced  drag  ,coefficient,  Di/qSe, equation (69)  

CL l i f t   c o e f f i c i e n t ,  L/qSe, equation  (54) 

3 



C1 

cmb r 

C 

D i  

Dnn* 

e 

G 

Inn* 

Knn* 

w i n g   r o l l i n g  moment c o e f f i c i e n t ,   r o l l i n g  moment/qSe2se, 

equation  (61 ) 

wing  running  bending moment c o e f f i c i e n t   a b o u t   l a t e r a l   p o i n t  q,, 
Mbb/qSe2Se, equat ion (56)  

wing  root  bending moment c o e f f i c i e n t ,  Mbr/qSeZSe 

wing  chord 

wing  average  chord, Se/ZSe 

equals cp w i t h  n o r  n*   subs t i tu ted   fo r  p 

w ing   chord   Four ie r   coe f f i c ien ts ,   equat ion  (35) 

F o u r i e r   c o e f f i c i e n t s   f o r   p r o d u c t   o f   w i n g   c h o r d  and  angle of  
at tack   cond i t ions ,   equat ion  (35) 

wing  induced  drag 

nonp lanar   induced  d rag   in f luence  coef f i c ien ts ,   zero   fo r   p lanar  

wing,  equation (67) 

induced  d rag   e f f i c iency   fac to r ,   equat ion   (116)  

dimensionless  c i rculat ion,   r /2seV,  equat ion  (14) 

w ing   cho rd   i n f l uence   coe f f i c i en ts  , equat ion (35) 

nonp lanar   w ing   cho rd   i n f l uence   coe f f i c i en ts ,   ze ro   f o r   p lana r  

wing,  equation (35) 

4 



I 

k 

L 

L1 

surface  loading  factor,   equation (24)  

wing l i f t ,  a l s o  wing r o l l i n g  moment, equation  (61) 

nonplanar wing la teral-ver t ical   p lane  inf luence  funct ion,  
equation (32)  

Ln*w L1 integration  nonplanar wing spanwise  loading  influence 
function,  equation (33)  

M odd in teger ,  number of terms i n  quadrature  formula,  equation 
(1 8) 

Mb wing bending moment about a specified  span  station 

N integer  denoting number of unknowns and equations,  equation (34)  

n ,  n*, P integers  of  spanwise  loading  Fourier  coefficients and influence 
coe f f i c i en t s ,  odd only  for symmetric  loading,  equations  (15), 
( 3 4 ) ,  and (35)  

dynamic pressure,  7 pV2 
1 

surface  area  of  nonplanar wing ,  includes wing  area i n  yz-plane 

surface  area o f  planar wing 

spanwise  coordinate  along nonpl anar wing surface,  figure 1 ( a )  

t o t a l  semispan  distance  spanwise  along wing surface from wing 
roo t   t o  wing  t i p ,  f i g u r e   l ( a )  . 

V f ree   s t ream  veloci ty  
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induced veloci ty  normal t o  wing  s u r f a c e   o r   t r a i l i n g   v o r t i c i t y  
sheet, equations (5) o r  (6)  

in tegers  which denote  span  stations,  equation (41 ) 

lateral   posit ion  of  spanwise wing s t a t i o n  s 

vertical   posit ion  of  spanwise wing s t a t i o n  s 

a i rc raf t   angle   o f   a t tack  

wing geometry angle,  equation (28) 

induced  angle normal t o  wing surface,  equation (27)  

wing c i r cu la t ion  

nonplanar wing dihedral  cant  angle, measured from y-axis,  
f i gu re  1 ( a )  

wing twist angle 

dimensionless  vertical   coordinate,  Z /Se  

dimensionless  lateral   coordinate,  y/Se 

spanwise s t a t i o n   a t  which wing r u n n i n g  bending moment i s  taken 

l a t e r a l  semispanwise  center  of pressure locat ion 

angles used i n  der ivat ion  of   induced  veloci ty ,   f igure  l (a)  

w i n g  t a p e r   r a t i o ,  t i p  chord/root  chord 

6 



Ao’ 4v planar wing  winglet   taper  ratios,   equation (75) 

XWO ra t io   of   winglet   root   chord  to  wing root  chord,  equation (75) 

n sweep angle o f  wing half  chord  line 

u integers  for  quadrature  formula,   equation (18) 

P densi ty  

spanwise  trigonometric  coordinate,  cos-'^^, equation (15) 

dimensionless  spanwise  coordinate,  S/Se,  equation (14) 

J, winglet   toein  angle ,   posi t ive  for   toein  def lect ion,   equat ion 
(28) 

Subscripts : 

av average 

b bending moment, a l so  bend ing  moment about   la teral   point  q b  

C P  center  of pressure 

e nonpl anar wing t i p  

i ,  j i t h  and j t h  v o r t i c i t y  sheets, equation (6) 

n,n*,p integers, equations (34) and ( 3 5 )  

0 spanwise  station where winglet begins ,  t h a t  i s  junct ion  of  wing 
and winglet 

7 



planar  wing 

wing  root 

vorticity  sheet 

normal  to  surface  induced  velocity  or  downwash  point 

integers,  equations (41) and (71) 

integers,  equations (18), (21), and  (22) 
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DEVELOPMENT OF THEORY 

Nonplanar loading  theory  differs from planar  theory by the  difference i n  
velocity induced normal to   the  wing surfaces. In load l ine  theory  this  
induced veloci ty  i s  simply tha t  due t o   t h e   t r a i l i n g   v o r t i c i t y  system. Using 
the  nonplanar  induced  velocity combined w i t h  the  planar 1 oad-1 ine  theory 
of  reference 6 will provide  a  nonplanar  load-1  ine  theory. 

Induced Velocity  Integral  Equation of  Nonplanar Vorticity  Sheet 

Single  Vorticity  sheet.  - A single  nonplanar  trailing  sheet  extending 
longi tudinal ly  from zero t o  i n f i n i t y   i s  shown i n   f i g u r e   l ( a ) .  The normal 
induced veloci ty   a t   point   (yw,  z,), by Biot-Savart  law, i s  given by 

Refer r ing   to   f igure   l (a ) ,   the   fo l lowing   re la t ions  can be developed: 

II - TT 
e + T +  YW - T +  e o ,  e = e o  - yw 

COS YW = COS e o  cos yw + s in  e o  s in  yw 

COS eo = (yv-yw)/r ,   s in  eo = (zv-zw) / r  

Let s be distance  along  the  surface  of  the  vorticity  sheet measured  from 
midpoint  of  the  sheet. Then the   d i f f e ren t i a l   r e l a t ion  between s and y is  

9 



W i t h  the e ,  eo, and yw values  of  equation (2)  inser ted  into  equat ion  (1) ,  the 
incremental downwash a t   po in t  yw, zw  due t o  a nonplanar   t ra i l ing   vor t ic i ty  
sheet i s  

Integration d f  equation (4 )  leads  to  

where the  integrat ion i s  taken  along s ,  t h a t  i s  a l ine  integral   along  the 
vor t ic i ty   shee t .  The integrand  variable yv i s  re la ted  w i t h  s by the  expres- 
sion  given i n  equation ( 3 ) .  The p o i n t   a t  which normal veloci ty  w i s  
determined is  defined by yw and zw. The nonplanar  vertical  displacement of 
the wing given by z i s  an a rb i t r a ry  function  of y.  The der ivat ive (dz/dy)w 
is  the   s lope   a t  z a t  the  point yw, zw, and i s   cons tan t  i n  the  integrand  of 
equation (5 )  a s   a r e   a l so  yw and zw. 

Multiple  vorticity  Sheets.  - An example o f  a pair   of   vort ic i ty   sheets  i s  
shown in   f i gu re   l (b ) .  The to t a l  induced normal veloci ty  a t  sheet j i s  not 
only t h a t  due to   shee t  j b u t  a l so   tha t  due t o  sheet i ,  or fo r  many sheets w i t h  
i = 1 ,  2 ,  . . . In equation ( 5 )  the induced veloci ty  normal t o  the  slope 
l ine  (dz/dy),   is   determined  at   point (yw, zw)  which i s  a point on the 
vorticity  sheet  represented by the  function z v ( y ) .  However, the p o i n t  
(yw, zw) i s   a r b i t r a r y  and can be on any curve z ( y )  , t h a t  i s  can be d i f f e ren t  
than  the  zv(y)  curve.  Let Zvi represent an N-group o f  vor t ic i ty   shee t  
curves,  then  the normal velocity  along  the Z w j  curve  obtained by reapplication 
o f  equation ( 5 )  i s  given by 

10 



where j = 1 through N. W i t h  equation (6 )  the induced normal veloci ty  can be 
determined along the span of N a b i t r a r i l y  shaped v o r t i c i t y  sheets o r  wings.  
Some examples  of  various  shapes  that can be analyzed  are shown as  follows: - u u n 

0 

Induced  Velocity  of Wing w i t h  Winglet 

For a s ing le  wing  w i t h  winglet the vort ic i ty   sheet   appears   as   fol lows:  

I "  Twinglet 

wing 
Y 

-Ye 'YO 0 Yo Ye 
o r  - . s o  o r  so 

For this nonplanar  geometry the coordinate   re la t ions  are  

i n  the  range 
- Y 0 4 Y  L Y o  

z = o  

$ =  0 

y = s  

i n  the range 
Y o  L Y &Ye 

" dz - tan y dY 

i n  the range 
-Ye L Y ,L -Yo 

z = ( -y-yo ) tan y 

" 

dY dz - -tan y 

y = so + ( s - s ~ ) c o s  y y = -so+(s+so)cosy 
z = ( s  - so)sin Y z = -(s+so)sin y 

W i t h  equation ( 7 )  values inserted into  equation (5)  the veloci ty  normal t o  
the surface i s  given by 

11 



for 0 6 sw L s 

dr (8 1 f S o [ s v  cosy  -s~-s~(l-cosy)] z-, dsv 

and  for SO L sW 4 Se 

so [-(1 -2cos2y)sv-sw-2so(l-cosy ) COSY ] dsv 

[(sV-s,,)cosy -2so (I -cosy )]2 + (sv+sw)2  sin2y 

dr 
(9 )  

The integral  with  the ( sv  - sW)-' term in the  integrand  contributes  a 
large  Part  of  the  induced  velocity,  because  it  results  from  the  vorticity 
nearest  the  point at which  the  velocity  is  determined.  This  integral  is 
analytically  simple  to  obtain if the  integration  is  taken  over  the  whole 
wing;  that  is,  from  -Se  to  se.  Equations ( 8 )  and (9) give  the  same  result if 
the (sv  - sW)-' integral  is  added  for  extending  the  integration  and  subtracted 
from  the  more  complicated  integrand.  With  this  adding  and  subtracting  and in 
dimensionless  notation,  equations ( 8 )  and (9) simplify  to 

for 0 6 uW 4 u0 

12 



and f o r  a. L uw L 1 

where 

The dimensionless  values i n  equations (10)  through  (13)  are def ined  as  
f o l l  ows : 

S - so G = -  r - W 0 = -  
Se Se Y q - j - - Y  zSev 3 - - V (14) 

W i t h  equations  (10) and (11) the induced angle normal t o  the nonplanar 
wing surface can be determined f o r  an a rb i t ra ry   loading  G .  This i s  f o r  the 
nonplanar wing o r  wing-winglet  defined i n  equation ( 7 ) .  

" Integration w i t h  G represented by a Fourier   ser ies .  - Let the w i n g  
loading  coefficient  along  the s o r  u coordinate  of the wing be given by 

where u = cos$. Then the f irst  integral  i n  equations 

Since cos n$,, d$" - -  sin n$K 
cos $v - cos $w sin $w 

0 

(10) and (11) 

cos n$,, d$" 
COS$V - COS$, 

(15) 

becomes 



then 

When G i s  expanded i n  a Fourier series the L i n t eg ra l s  become complicated; 
however accurate   integrat ions  can be obtained by using a simple quadrature 
formula  given by 

91 v=l  

where $,, = $1 f v ( 9 2  + - !I) ,  and M i s  an odd in teger .  Then the L- in tegra l  
of  equation (10) becomes 

where $1, = %, and where examination o f  equation  (12) shows t h a t  
L- ( 4 0 ~ 4 , )  = 0. Simi la r   i n t eg ra t ions   a r e  made f o r  the o ther  L i n t eg ra l s  
which appear i n  equations  (10) and (11).  W i t h  the equation (19) procedure 
and w i t h  equation  (17),  equations  (10) and (11)   for  symmetrical  loading 
( n  = odd)  reduce t o  

N 

odd 
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where f o r  0 A a w ~ o O  o r  

and f o r  uo s uw L 1 o r  0 s $w L o0 

M4 

where $3p = $o + - ' D ( W J ! ! d  - , $4,, = - 
odd integers. 

In equations  (21) and (22), the L+(I$ , , ,$~)  and Lo($p ,+w)  functions  are  given 
by equations (12)  and (13), i n  which uv = cos$,, OW = COS Ow, and uo x COS $0. 

M3+l &, and M I  , M 2 ,  M 3 ,  and M 4  a r e  

Load-Line  Theory 

Load-1.ine theory i s  devel oped i n  reference 6 f o r  the planar wing.  In 
this  theory the boundary condi t ions   a re   sa t i s f ied   a t   a l l   po in ts   a long  the 
span and an a spec t   r a t io   f ac to r  i s  introduced, however, the theore t ica l  
s impl ic i ty   o f  the l i f t i ng - l ine  method i s  maintained. In the present develop- 
ment, this load-line  theory i s  extended  into a load-line  theory  for  nonplanar 
wings . 

The integra ' l   loading  equat ions  s tar t  w i t h  the re la t ion   tha t   sec t ion  
loading is  given by 

15 



where ac i s  the  incidence  angle between free  stream  velocity and wing chord, 
a i  i s   t h e  induced  angle  due t o  wing wake vor t ic i ty   shee t   o r   mul t ip le  
vort ic i ty   sheets   extending  longi tudinal ly  from zero t o  i n f i n i t y ,  and k i s  
a l i f t i n g   s u r f a c e  downwash fac tor  developed i n  reference 6. The fac tor  k 
originated i n  the  study  presented i n  reference 7,  where i t  had the  value 
( A  + 4)/(A + 2 ) .  Later work showed t h a t  a more accurate  value for k i s  

Using the dimens 
nonplanar  aspect 

k =  A + 3.79 
A + 1.895 

ionless   def in i t ions  of equations (14)  and (15) and def 
r a t i o  and average wing chord a s  

A = -  4se 
Se 2se cav = Se , se  = surface  area  of  nonplanar wing  

2se = wing t i p  to   t ip   per imeter   length 

then  equation  (23) becomes 
N 

i n i n g  

Equat ion (26)  i s   t h e  form of the  equation for  l i f t i ng - l ine   t heo ry  
solutions  except  here  the k fac tor  i s  introduced. In l i f t i ng - l ine   t heo ry  
k=l .  The planform  geometry  terms C/Cav and ac are   funct ions of 4, and dri = 

a i ( + ,  n ,  a n ) .  By specifying + a t  m spanwise s t a t i o n s ,  .F? linear  simultaneous 
equat ions  resul t  w i t h  m unknown a n ’ s .  These are  solved  for  an. These 
values of  an represent  the  solution  for which the boundary conditions  are 
s a t i s f i e d   a t  a f i n i t e  m spanwise s t a t ions .  

16 



In load-line  theory the boundary c o n d i t i o n s   a r e   s a t i s f i e d   a t   a l l   p o i n t s  
along the wing span. This is  possible  by  a spanwise  integration  of the wing 
chord , angle  of a t tack,  and induced  angle.  In  equation (26) ai can be 
represented by the function 

Then the expression on the r igh t   s ide   o f   equa t ion  (26)  i s  only a function 
o f  $ and n* but  not  of n .  Then by Fourier  theory the Fourier   coeff ic ients  
are   given by 

or  

f o r  n = 1, 2, 3, . . . 
For a single w i n g ,  ai i n  equation  (27) i s  g i v e n  by the ra t io   o f   equa t ion  
( 5 )  t o  V .  For multiple wings, ac i n  equation  (27) i s  added to   equat ion (6)  minus 
equation ( 5 ) .  In add i t ion ,   a l l  the terms i n  equation  (27) become those   for  
the j t h  w i n g ;  t h a t  i s ,  A j ,  (C/Cav)jy a c j y  k j y  and a j n ,  which a r e  the Fourier 
loading   coef f ic ien ts   for  the j t h  w i n g .  The w i n g  geometry angle aC i s  made up 
of the effect  of wing o r   a i r c r a f t   a n g l e   o f   a t t a c k  a on the nonplanar w i n g ,  
the wing twist E ,  and the toein-toeout  angle I/J of the nonplanar wing. Wing 
twist and toein  angle  w i t h  the wing unincl ined  are   def ined  as   angles  between 
the wing chord  and free s t ream  veloci ty ,   posi t ive i n  the d i rec t ion   for   loading  
increasing on the upper wing surface.  For the nonplanar wing the effective 
ang le   o f   a t t ack   a t  a wing sect ion i s  a cos y. Then 

where tan y = (a;;),+, dr; cos y= [l + 
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Thus the  solution  of the nonplanar wing loading  integral  equation  reduces  to  the e 

load-line  solution  for  determining  the an Fourier  loading  coefficients  of 
equation  (27). I t  i s  simply  a wing geometry integrat ion which includes  the 
wing chord dis t r ibut ion  a long u o r  $I and the angle ac d i s t r ibu t ion  given i n  
equation (28) .  The second integral   involves  the  integration  of w (yw, zw) - 
Vai(+w) of  equation (5). In a dimensionless equation .(5) the nondimensional 
der ivat ive  of   c i rculat ion becomes an n* s e r i e s  given by equation  (15) b u t  
w i t h  n = n*, and $I = $I,,. 

Load-l.ine method for  s ingle  wing .  - The induced  angle i n  equation (27)  
can be expressed  as  that  due t o  a planar wing plus  t h a t  due to   the  difference 
between  nonpl anar and planar wings, as  was done i n  equations (1 0 )  and (1 1 ). 
Let a i p  represent   the induced  angle due t o  a planar wing and ai0 t h a t  due 
the  effects  of  the  nonplanar  condition. Then a i  = U i p  + aio.  Then, i n  
nondimensional  terms,  equation  (5) can be writ ten  as 

where w i t h  equation ( 1 7 )  

and w i t h  equation (15)  

where 
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With  equations (29),  (30) and (31)  inserted i n t o  equation (27) ,  the  loading 
integral  equation f o r  the  single  nonplanar wing becomes 

N N 
7T 

an = A can - 1 n*Inn* an* - $ 1 n*Knn* an* .rrk 

n*= 1 n*= 1 

n = 1 , 2 , 3 ,  . . . . .  N 

where 7T 

can = p f %v ac s in  n $  d 9  
0 

IT n+n*-1 

(34) 

where the Inn* - cp  re la t ion  is   der ived i n  reference 6. The f i r s t  two 
terms on the r i g h t  s ide  of equation  (34)  are  the same as . those  for the 
planar wing  since  then Knn* = 0 because L1 = 0. The so lu t ion  for  an involves 
N equations and N unknowns o f  an or an* which are  solved  as  l inear  simultaneous 

19 

. " 



equat ions.  The c o e f f i c i e n t s  cp  and Can a r e   i n t e g r a t i o n s   o f   t h e   b o u n d a r y  
c o n d i t i o n s ,   t h a t   i s ,   t h e   w i n g   c h o r d   d i s t r i b u t i o n  and  wing  angle o f   a t t a c k  
d i s t r i b u t i o n   a l o n g   t h e  spanwise 0 = cos-' u parameter. The C P ' S  a re   t he  
F o u r i e r   c o e f f i c i e n t s   o f   t h e   w i n g   p l a n f o r m   w h i c h   w i n g   i n  a Four ie r   se r ies  
f u n c t i o n  can  be  represented  by 

S i m i l a r l y   C a n ' s   a r e   t h e   F o u r i e r   c o e f f i c i e n t s   f o r   t h e   p r o d u c t   o f   w i n g   c h o r d  
and geometric  angle  ac. The angle aC which  the  wing  chord makes w i t h   f r e e  

s t r e a m   v e l o c i t y   i s   g i v e n   i n   e q u a t i o n   ( 2 8 )  where a i s  cons tan t   w i th   respec t  
t o  + o r  u.  Equat ion   (34)   app l ies   to  a s ing le   nonp lanar   w ing   o f  any v e r t i c a l -  

l a t e r a l  shape s ince < = ~(11) o r  z = z ( y )   a r e   a r b i t r a r y   f u n c t i o n s .  I n  addi t ion,  
t h e   w i n g   c h o r d   d i s t r i b u t i o n   w i t h  unswept  midchord l i n e  can  be f o r  any  plan- 

form  shape, and t h e   w i n g   t w i s t   o r   w i n g l e t   a n g l e   d i s t r i b u t i o n   a r e   a r b i t r a r y  
func t ions .  

Symmetric  Spanwise  loading. - Th is   l oad ing   resu l t s   f rom a spanwise 

symmet r ic   w ing   p lan form  w i th   spanwise   symmet r ic   d is t r ibu t ion   o f   ang le   o f  
at tack  across  the span. Wi th   these  cond i t ions   on ly  odd  numbered  values o f  p, 

n,  and n* of cp, Can , and Knn* have values i n   e q u a t i o n   ( 3 5 ) .  For symmetric 
l o a d i n g   s o l u t i o n s  i t  i s  conven ien t   t o   eva lua te   t he   a1   coe f f i c i en t   i n   t e rms  

o f   r a t i o s   o f   a n / a l .   F o r  n = 1 equat ion  (34)  becomes 
N N 

odd odd 

then al = rCa 1 
N 

A + 2k [1 + 311 + f 1 (Cn* + 2Kln*)n* -1 an* 
a1 

n*=3 
odd 
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Div id ing  equation (34) by equation (38) gives 
N 

odd (39) 

f o r  n = 3,  5, 7, . . . N 

where the coef f ic ien ts  C a n ,  Inn*, K n n * y  and cP   (no te   tha t  p can be substituted 
by n or n* i n  the cp  integral  ) a r e  given  in  equation  (35). Only the 
coe f f i c i en t s   fo r  odd  numbered values  of n ,  n*, and p a r e  needed f o r  the 
symmetric  loading  solution.  Equation  (39)  has (N-1)/2 equations i n  n with 
(N-l)/2 unknowns of  an/al  or  an*/al which are   evaluated by solving  as  
simultaneous  linear  equations. The C n  and Cn* coef f ic ien ts   a re  the CP values 
given i n  equation (33)  b u t  with n o r  n* subs t i tu ted   for  p.  

Planar-wing  winglet  solution  for  symmetric  spanwise  loading_. - The Fourier 
loading  coeff ic ients   an  are   obtained from the solution  of  equations  (39) and 
(38).  For t h i s  nonplanar  configuration the L1 function  of  equation  (32) i s  
formulated  as L, and Lo functions  given  in  equations (12)  and (13) .  The 
numerical   integration  of  these  functions  results  in the Lnw expressions  given 
i n  equations ( 2 1 )  and ( 2 2 ) .  From equation  (35)  the Knn* coe f f i c i en t s   a r e  

- 

where for   this   nonplanar   configurat ion the Ln*w are  given by Lnw o f  equations 
(21) and ( 2 2 )  b u t  w i t h  the subst i tut ion  of  n* f o r  n .  Equation (40) can be 
integrated  numerically by u s i n g  the  quadrature  formula o f  equation (18). Let 
4 = $w = WT/ (M+1) , then 

M 
Knn* = - M+ 1 2 ~ ( $ 1 ~  Ln*w sin n4w1 

w= 1 
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where M is an  odd integer.   Since the chord distribution  spanwise is 
symmetric and f o r  odd n sin n h  is  symnetric,  and the induced  angle 
contr ibut ion o f  Ln*w i s  symnetric, then 

M-1 

where the (M+1)/2 subscript   denotes midwing condi t ions ,   tha t  i s  a t  $w =  IT/^ 
or  ow = cos $w = 0. The chord term ( C / C ~ ~ ) ~  is  t h a t   a t  span s t a t ion  cpw = 

w m / ( M + l ) .  Ln*w i s  w i t h  & i n  the & range o f  equations (21 )  o r  (22),  i n  
which n i s  changed t o  n*. In equations  (12) and (13) uW = cos [wm/(M+l)]. 
To minimize numerical   integration  error $o should be chosen between the 
$w p o i n t s ,  o r  $0 # wm/(M+l). 

The planar-wing winglet an coe f f i c i en t s   fo r  symmetric  spanwise  loading 
are  obtained by the solution  of  equation  (39) w i t h  the Knn* of  equation (41 ) 
and the C a n ,  Inn*,  and cp  of odd n ,  n*, p in tegers  i n  equation  (35). Example 
values o f  Ln*w w i t h  $o = 5r/32  radians have been computed us ing  equations 
(21) and (22) and a r e  presented i n  t ab l e   I .  These  values  are for  M = 15 
w i t h  ow = wm/l6. 

Slender Wing Theory and E l l i p t i c  Wing Theory 

E l l i p t i c  wing  and A- limit so lu t ion .  - For the e l l i p t i c  wing 
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t h e n  the Fourier   loading  coeff ic ients   for  the e l l i p t i c  wing planform a r e  
N 
c 

n*=l 

for  n = 1 ,  2 ,  . . . N 
where cafi and Knn* are   the  ;coeff ic ients   given 
 IT IT) sin $, t h a t  i s  

IT 

Can ac sin I$ sin n $  d$, Knn* = 
J 
0 

i n  equation  (35) b u t  wi.th c/cav = 

IT $-r Ln*w sin $ sin n$ d$ (45) 
’0 

f o r  n = 3, 5, . . . N odd J 
As aspect  ratio  approaches inf in i ty ,  the  solut ions for an reduce t o  d i r e c t  

r e l a t ions  between an and the wing geometry coeff ic ient   can.  For A -f o3 

equations (38) and (39) become 

where Can i s  given i n  equat ion  (35) ,   or  f o r  t h e   e l l i p t i c  wing  by equation (45). 
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a s  shown i n  reference 8, equation  (44)  for A -f 0, k -+ 2 ,  becomes 
N 

Slender wing. - When aspect   ra t io   approacheszero,  then, f o r  any wing 
planform w i t h  t r a i l i n g  edge c u t o u t   a f t   o f   a l l  p o i n t s  of swept leading edge, 

(48 1 
n*=l 

where Can and Knn* a r e  g iven  i n  equation  (45). W i t h  symmetric  loading 
equation  (46)  for a A -+ 0 w i n g  i s  

1 (49) 

for n = 3 ,  5 ,  . . . N 

Another der ivat ion of  nonplanar  slender wing theory is  t o  note from 
equation  (26)  that the boundary condi t ions  are   s imply  that  aC = kai = 2ai 
as  A -f 0. From equations (29), (30), and (31) 

N N 

N N 

1 n an sin n (p = aC sin4 - 2 1 n* an* Ln*w sin 4 
n = l  n*=l 
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from  which the  Fourier  coefficients  are 

which i n  terms  of Can and Knn* of  equation  (45), becomes 
N 

which i s  the same as  that   of  equation  (48).  

Force and Moment Coefficients 

Spanwise loading and l i f t   c o e f f i c i e n t .  - With the  Fourier  loading 
coef f ic ien ts  an determined by equation  (15),  the  spanwise  loading 
distribution  along  the  spanwise u o r  $I coordinate i s  

N 

n=l 

where 9 = cos-’u, and the  loading  is  normal to   the  wing surface  in  the 
yz - plane. 

The l i f t   c o e f f i c i e n t  i s  given by 

where G, is  the   ver t ica l  component of the  loading  coefficient G which 
i t s e l f  is  normal to  the  nonplanar wing surface-. GZ i s  given by 
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where as i n  equation (28) 

then 
N 

‘L - - L= qse A f T G  cos y sin $ d$ = A 1 an/ cos y sin$ sin n$ d$ 
0 n = l  o 

N .IT 

n=I Jo 

For a planar-wing winglet, y is  constant between Or $ g $o, I T - $ O L $ L  IT 

and zero between $o $ 6  IT-$^ , then equation (54) f o r  symnetric loading 
reduces t o  

N 

1 an[ n-1 CL = * - A(l-cos y)  > +  
n=3 

s in(n- I )@o sin 2@ al($o - 2 

odd 
sin(n +l )@o 

n + l  I} (55)  

Wing Bending Moment. - A w i n g  r u n n i n g  bend ing  moment along the wing 
span  coordinate 0 o r  @ can be formulated  for a nonplanar wing by use o f  the 
following  geometry: 

\ 
y / w i  n g  

a r b i t r a r y  nonpl anar 
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The  incremental  bending  moment at point  (Yb,Zb)  is  the  incremental  loading 
pVrds  times  the  perpendicular  moment arm. between  points (Yby zb) and P. 
That  is 

With integration  and in dimensionless  terms,  the  wing  bending  moment 
coefficient at point  (nbycb)  is 

1 

For  a  planar-wing  winglet  the  coordinate  relations  with qb ,L q0 are 
given by 

then  equation (56) simplifies  to 
1 

h b b  = +fag (o-ab)Gda + g -  [a-oo + (oo-ob)COSy]G  da 
ub 00 



where i s  constant  i n   t he   i n teg rand .   Fo r   symmet r i c   l oad ing   w i th  G i n   t h e  

Four ie r   ser ies   expans ion ,   fo r   the   p lanar -w ing   w ing le t  and I$Ib 2 +o, t h i s  

i n t e g r a t e s   i n t o  

n= l  c 
odd 

[tJo-sin +o cos $o, n = 1 11 

where Cmbb i s   t h e   w i n g   b e n d i n g  moment c o e f f i c i e n t   a t  span s t a t i o n  $b due t o  
l o a d i n g   o u t b o a r d   o f  +b. The wing  root  bending moment i s   w i t h  Ob = 9, then 
equat ion   (58)   reduces   to  

IT 

(59) 
J 

The c o o r d i n a t e   r e l a t i o n s   f o r   r u n n i n g   b e n d i n g  moment o f   t h e   p l a n a r - w i n g  
w i n g l e t   a t   p o i n t s  on the   w ing le t ,  Qb 2 q0, 

then  using  equat ion  (56) as be fore  

N f  

odd 

s i n ( n - l ) $ b  1 n-1 n+l  
- 
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where  the bending mment is at  span  station  Ob& +o, that is, $b is  on  the 
wi ngl et. 

." Wing  rolling  moment. - Rolling  moment  is  the  same as the  wing  root  bending 
moment  except  the  spanwise  loading  is  antisymnetric  and  the  integration  spans 
the wing. Thus  for  rolling, equation (56) becomes 

where  here L denotes  rolling  moment  and C1  is the  rolling  moment  coefficient. 
For  a  symmetric  planform  and  antisymmetric  loading 

N-1 d 2 

c1 = A   an f (ncos y + 5 sin y) sin + sin n$  d+ 
n=2 
even 

then  with  antisymmetric  loading 
N-1 

even 
Induced  drag  coefficient. - Induced  drag  is the  spanwise  integration of 

the  product of spanwise  loading  normal  to  wing  surface  in  the y, z plane  and 
wake  normal-to-surface  induced  angle.  Thus 
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In  dimensionless terms 

W i t h  equations  (52) and (50) inserted into  equation  (65),  the drag 
coe f f i c i en t  becomes 

N N N 

where Ln*w i s  given i n  equations  (33) and (32) .  This Dnn* in tegra l  i s  of the 
same form as  the equation  (35) Knn* in tegra l  and is  ident ica l  when (2/.rr)(c/cav) 
equals sin 0. Comparing equations (67) and (45), i t  can be not iced  that  , 

the Dnn* coe f f i c i en t s  have  an iden t i ty  w i t h  the b n *  coef f ic ien ts   o f  the 
e l l i p t i c  wing;  t h a t  i s  

Examination  of  equations  (33) and (32) shows t h a t  Dnn* depends  only on the  
wing spanwise  vertical  displacement,  the 5 = ~ ( q )  funct ion,  and i s  
independent o f   a l l   o t h e r  planform  geometry  such  as  aspect  ratio,  chord 
d i s t r i b u t i o n ,  sweep, and wing  angle   var ia t ion.  Thus  once Dnn* coef f ic ien ts  
a re   t abula ted  for a g iven  5 curve ,   they   a re   va l id   for  any  planform  shape. 
For symmetric  spanwise  loading, Ln*w i s  symmetric, and also  only odd n and n* 
apply; then equations 

N 

cDi = 2 n 
n=l 
odd 

(66) and (67) simp1 i f y   t o  
N N 

L L 

n=l n*= 1 
odd odd 
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T I  2 
Dnn* = 2 f  Ln*w  sin (I sin n(I d(I, for odd n and n* 

0 

The  Dnn*  coefficients of the  planar-wing  winglet  configuration  with 
symmetric  spanwise  loading  are  determined in the  same  manner  as  done  for  the 

coefficients of equation (40). After  emp'loying'this  similarity  relation, 
which  is  simply  the  substitution of sin ow for  (2/T)(c/cav)  into  equation 
(40) ,  equation (70) becomes M-1 - 

2 
i 

where $,,, = wT/ (M+1) , and M y  n , and n* are  odd  integers 
winglet  Ln*w'S  are  determined  from  the  appropriate $,., 
or (22) (in which n is  changed  to n*). 

r 
For  the  planar-wing 

ange of equations (21 ) 

Example  computations  have  been  made  for  one  planar-wing  winglet 
configuration;  that  is,  for +o = 5~/32 radian or uo = .8819 which  is  the 
span  station  at  which  the  winglet  begins.  For M = 15,  then = w1~/16, the 
Ln*w  computed  from  equations  (21)  and  (22)  are  presented in table 'I. With 
these L ~ * ~  values,  the  Dnn*  coefficients  are  determined  from  equation (71) 
using M = 15.  Dnn*  coefficients  are  presented in table 11. When 
these  Dnn*  values  are  inserted  into  equation (69), the  induced  drag  coefficient 
depends  only  on  the  spanwise  circulation  distribution  or  laterally 
surface  spanwise  loading  distribution  normal  to  the  surface,  and  is 
independent  of  planform  shape  including  winglet  shape  or  sweep.  This 
planform  is  nonpl  anar  and  is for  a  planar-wing  winglet  with  wing  tip  winglets 
starting at uo = .8819 span  station  with  winglet  at a given y angle. 
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PLANAR-WING  WINGLET  LOADING  SOLUTION 

FOR RECTANGULAR WING 

The sample  application  of the theory  developed i n  the Previous  chapter 
demonstrates  the  usage  of the method. The example wing configuration i s  a 
symmetric wing w i t h  winglet a t  each wing t i p ,  the combination  being  described  as 
a planar-wing  winglet.  Particularly, the rectangular  wing and the s lender  wing 
i s  invest igated i n  d e t a i l .  An ob jec t ive  i s  t o  show example solut ions  of  
equations  (39) and (49) f o r  the predict ion  of   an/al   Fourier   loading  coeff ic ients .  

Chord Distribution  for  Tapered Planar-Wing  Winglet 

The chord d i s t r ibu t ion  i s  

where cy. i s  w i n g  root  chord, co i s  wing chord a t  span s t a t i o n  uo ,  cwo is  
winglet  chord a t  span s t a t ion  u0, and cwt i s  winglet  chord a t   w ing le t  t i p  
(0 = 1 ). The chord d i s t r i b u t i o n  of  equation (72)  l eads   t o  the following wing 
geometry r e l a t ions  
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Planform  Fourier  Coefficients 

From equation ‘(35’), the cp  coeff ic ients .   are   obtained from the  integrat ion 

IT P=l  4 
cp  = 2 /” s in  p$ d$ = - 

IT cav IT 

0 

where, for  the  tapered  planar-wing  winglet, C/Cav i s  given by equation  (75). 
For  a rectangular wing w i t h  rectangular  winglet,  equations (74) and (75) 
reduce t o  

where xw0 = 

Inserting  equation ( 7 7 )  into  equation (76)  the CP coef f ic ien ts   a re  
‘wi ngl e t  wing , / C  and C/Cav i s  symmetric w i t h  respect t o  9.  

From equation  (35) the Inn* coef f ic ien ts   a re  g iven  by 

n+n*-1 
Inn* = c cp 

p= In-n*l-l 
odd 

(79) 
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The ac dis t r ibut ion  of   equat ion (28) ,  f o r   t h e  planar-wing  winglet is 
given by 

aC = a+€ , $o <- $ 5 R 
2 

= a C O S y + € + $ ;  0 5  

where a is  independent  of 9; however, E and 9 can be functions of $. 

Assuming Onlyadditional  loading  conditions,  then twist E i s  zero,  and assume 
tha t   the   toe  i n  angle $ is  constant  along  the  winglet. Then the can 
coef f ic ien t  of  equation  (35)  with  equations  (77) and (80) ,  becomes 

which is  the C a n  f o r  an untwisted  rectangular wing with  rectangular  winglet 

of  chord  ‘winglet - ’WO ‘wing’ 
- w i t h  winglet  extending from span s t a t ion  

= 0 to  @o, at  constant  dihedral   cant  angle y from the wing plane, w i t h  
toein  angle $. 

Nonplanar Knn* Coefficients 

For the  planar-wing  winglet,  these  coefficients  are  obtained from 
equation (41 ). The Ln*w coef f ic ien ts  i n  this equation  are  independent o f  
chord d i s t r ibu t ion ,  hence,  once known for a  given $o and y ,  they can be 
combined w i t h  any chord d is t r ibu t ion  for evaluating Knn* coef f ic ien ts .  
Example values o f  Ln*w fo r  $o = 5 ~ / 3 2   r a d i a n s  and y = 90 and 75 degrees  are 
shown i n  t ab l e  I .  These values  are based on computations w i t h  M = 15 and w i t h  
Q~ = w ~ / l 6 .  For an M = 15  computation  these Ln*w can be inser ted  into 

equation ( 4 1 )  and Knn* computed w i t h  (C/Cav)  given by equations (75)  0:- (77)  
i n  which, u = cos $w = cos (wn/16) and uo = cos ( 5 ~ / 3 2 )  = ,88192. Example 
values  of Knn* are  presented i n  t ab l e  I11 for a rectangular w i n g  w i t h  
rectangular  winglet  with  cwinglet - - t h a t   i s ,  x,, = 1. ‘wing3 
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Loading Solution f o ,  r R  ectangular Wing w i t h  xwo = 1 Winglet 

T h i s  wing-winglet has the geometry 

t h e n ,  f r o m  equation (78) 

4  4  4 cp = - lTp, Cn - - m y  Cn* = p, odd p ,  n ,  n* only 
- 

Equation (79) becomes 

n+n*rl 

odd 

and equation (81 ) reduces t o  

- 4a [COS y + ; + (1 - COS y - -)cos n ~ $ ~ ] ,  odd n only I) I) 
can - x a 

Equations (38)  and (39)  become 

odd 

for n = 3, 5, 7, . . . N 
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where 
cos y + - + (1 - cos y - -)cos n+o J, J, 

S m = -  a a 
ccll cos y + ; + (1 - cos y - -)cos O0 J, J, 

a 

and n*(1~/4) Inn* values  determined from equation  (84)  are  tabulated i n  t ab l e  
IV. 

Slender Wing Theory 

As aspec t   r a t io  becomes small ,   the  planform becomes s lender  and independ- 
ent  of wing o r  winglet  planform  shape o r  sweep i f  t r a i l i n g  edge cutout i s  
behind  leading  edge. W i t h  the E = 0, ac d i s t r ibu t ion  of equation  (80) 
inser ted i n t o  the can in tegra l  of equat ion  (45) ,   the  C a n  f o r  A -t 0 i s  

I 
then  the  ra t io   is  

c, 1 :- (1 - 

Comparing the  equat 
Dnn* drag  parameter 

i o n  (45) Knn* coef f ic ien ts   for   s lender  w 
coe f f i c i en t s  of equation (67)  i t  can be 

> 1  

i n g s  with  the 
seen  that  

W i t h  equation ( 9 1 ) ,  the   s lender  wing equations (49) for determining  symmetric 
loading  Fourier  coefficients become 
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N 

odd 

f o r  n = 3, 5, . . . N 

where Can i s  from equation (45), w i t h  ac from equation  (28) , and Dnn* from 
equation (67) .  Equations  (92) and (93)  are  general  for  obtaini.ng  nonplanar 
slender wing so lu t ions .  The f i rs t  term i n  equation  (93)  ( that  i s ,  w i t h  
Dnn* = 0 )  is  the slender wing planar wing solution  derived i n  reference 8. 
For the planar-wing wing le t  configuration, the Can values   are ' those i n  
equations (89) andi(90) ,  and Dnn* coefficients  are  determined from equation  (71). 

an Coefficients  for  Aspect  Ratio Approaching I n f i n i t y  

where with C a n  values  of  equation (81 ) , the an values for a rectangular  wing 
w i t h  rectangular  winglet   for A -+ a r e  

Wi th  = 1 , equation  (95) simplifies t o )  
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which i s  f o r  a rectangular wing w i t h  rectangular winglet having the same1 
chord  as the wing. 

Rectangular Wing Winglet Numerical Solu t ions   for  an 
and Force and Moment Coefficients 

These  example so lu t ions   a r e   a l l   f o r   r ec t angu la r  wing  and rectangular 
winglet w i t h  winglet  chord  equal t o  wing chord. However, a s   a spec t   r a t io  
becomes small these da ta   app ly   t o   a rb i t r a ry  wing and winglet  shape 
a s  born out by the slender wing theory.  Parameter  values  that remain the 
same i n  this numerical  example  include 

x0 = xw = xwo = 1 , @o = 57~/32 rad,  o0 = cos @o = .88192, M = 15, N = 9 

(97) 
Parameters which  have various  values  include 

W i t h  N = 9 equation  (87) becomes four  linear  simultaneous  equations i n  an /a l ,  
horn  equation (24) k = ( A  + 3.79)/(A + 1.895).  Also define +n a s  a shortened 
notation  for  equation (88) which w i t h  y = 90 degrees and $o = 5 /32  radians 
= 28.125 degrees   resul ts  i n  * + (1 - &)cos  (28.125 n )  - can - 1 a a 

%l ca1 n (99) 
.88192 + .11808 

6 a 

Then w i t h  Inn* values from tab1 e IV and the y = 90 degrees values  of Knn* 
from tab le  I11 the four   l inear   equat ions become 
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(E A + 2.0702)$3 - .69737 = (t + 8.5589 - 1.8682 $ ) 2 + (6.5716 - 1.9083 q,) 2 a 1  

+ (6.3840 - 2.0005 $ ) &z + (6.2065 - 1.8933 Q ~ )  ?-a 
a1   a1  

(k + 2.0702)$, - .44574 = (3.4571 - 1 ,8682 $5) + (t + 17.6827 - 1.9083$,) 

+ (12.7130 - 2.000595) + (11.5070 - 1.8933 $5) 2 
1 a l  

(1 00) 

(ST. A + 2.0702)$7 - .40765 = (2.6664 - 1.8682 $7) + (9.2030 - 1.9088 $7) a1 

+ (- + 28.0203 - 2.0005 $7) 3 + (18.6383 - 1 .8933~7)  %l 
A 
k a1  81 

When A and $/a are   specif ied,   a  SimUl taneOuS solution  of these four 
gives the an /a l  from n = 3 t h r o u g h  9. W i t h  an / a l  known, a l / a  can be evaluated 
from equation  (86)  which, w i t h  y = 90 degrees and $0 = 5 ~ / 3 2 ,  becomes 

3.5277 (1 + .13389 k) 
& L =  a 
a (101 1 A + 2 k  (1.0351 + .9341 2 + .9542 f %!. + .9467 

1 1 a1  a1 

Loading equat ions  for   other  y angles  using  equations  (86), ( 8 7 ) ,  and (88) 
can be wri t ten i n  a s imi l a r  manner t o  those of equations  (100) and (101 ) ,  It 
can be noted  that  w i t h  y = 0, hn* = 0, which i s  a  plannar  wing-winglet 
configuration. Values of  an determined from equations  (100) and  (701) and 
fo r   o the r  y angles   are  presented i n  t a b l e  V. 

"- Slender w i B .  - With A -+ 0, solutions of equations  (93) and (92)   are  
needed. For +o = 28.125 degrees,  equation (90) becomes 
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"6686 (1 - cos y - 8) 28.125 sin (n+l)  28.125 
h= 
ca 1 

- 
n+l  1 + ,05024 (COS y + &) a 

where the value w i t h i n  the bracke ts   for  n = 3, 5, 7,  . . . odd is  respect ively,  
.18477,  .19846,  .12090,  .00969,  -.09870,  -.07157,  -.02282,  ,03164, and so on. 
The coe f f i c i en t  cal i s  determined  from  equation  (89) which, f o r  = 28.125 
becomes 

k = 1.212334 [l + .05024 (COS y + :)I (1  03) 
ci 

.95217 [l + .05024 (cos y + $)] 
?.L= 

c1 9 

n*= 3 
odd 

For an A + 0,  N = 9 so lu t ion   for   an ' s ,   equa t ion   (93)  i s  solved. The value  of 
Can/'& i s  given i n  equation  (102) and n*(4/~r)Dnn* va lues   a re  i n  t a b l e  11. 

W i t h  y = 90° equation  (93) i s  

-. 001 11 + ,04255 $o = (-.94063 - ,00027 $0) 3 + (.05642 + .00007 $0) 
1 a1 

+ (.01882 + .00051 $o) + (.  00965 + .00255 $o) %L 
1 a1 

-.00052 + .02742 $o = (. 03267 - .00018 $o) + (-,98172 + ,00004 1cl0) %. 
a1  a1 

+ (-.00323 + .00033 q 0 )  + (-.02269 + .00033 $o) !b 
a1  a1  (105) 

.00519 + .01193 $o = (-,00349 - .00008 $ ) + (-,01700 + .00002 q ~ ~ )  %i 
O a1 a1 

+ (-1.02633 + ,00014 $ ) + (-.01645 + .00072 $o) i% 
O a1  a1 

.00351 + .00074 $o = -.01391 * - .01908 iki + (-.00932 + .00001 $0) ib- 
a1  a1  a1 

+ (-.99630 + .00004 q~ ) %L 
O a1 
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where 
1 -  I - a 

$0 - 1 + .05024 a 

W i t h  y = 90 degrees, equation  (104)  reduces t o  

.92144  (1 + .05024 
!!L= 
a 1 + .00645 - .00162 %i - .01203 - .05992 &L 

a1  a1  a1  a1 

When $/a i s  spec i f ied ,  a simultaneous  solution  of the equations 06 
equation  (105)  evaluates  an/al from n = 3 through  9. The f i r s t  Fourier 
loading  coefficient i s  g iven  i n  equation  (107). A -f 0 loading  equations  for 
other y angles   are   obtained  s imilar ly   to  the y = 90 degrees example.  Values 
of  an,  determined f o r  A -+ 0 from equations  (105) and (107) , and fo r   o the r  y 

angles  are  presented i n  t a b l e  V .  

W i t h  slender wing  nonpl anar  theory a reasonable  approximation  for  an/a 
as  seen by examining  equation  (93) i s ,  s ince Dnn* values   are   not   large 

where can/a1  for A -f 0 are  given i n  equation  (102). A better approximation 

where the p r  
n* = n.  The 
In this form 
simultaneous 
the equation 

* 

ime on the summation sign means the term i s  not summed when 
coef f ic ien ts  D l ,  and Dnn symbolize Din* and Dnn* f o r  n* = n .  
an/al can be determined d i r e c t l y  and does  not  involve a 
equations  solution. When an /a l   a r e  known, a1 i s  computed from 
(92)   re la t ion.  
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A + 0)  solution. - With $o = 28.125  degrees  equation (96) becomes 

i?-L a + 3*5i77 [1 + .1339 (cos y + k)] a (1 10) 

+ 1.1339 cos y + $ + (1 - cos y - 8) cos (28.125 n) 
n (111 1 

1 + ,1339  (cos Y + :) 

Equations (110) and (111) are  the  an  coefficients  for a  rectangular wing winglet 
with  winglet  chord  equal  to  wing  chord,as  aspect  ratio  approaches 
infinity.  Example  numerical  values  are  included in the  data  of  table V. 

Lift  coefficient. - With @o = 28.125  degrees, N = 9, equation  (55) 
becomes 

cLa 2a - " .rrAal [.l - (1-cosy)  (.047835 + .11763 9 + .12634 %i + .07697 9 
a1  a1 a1 

+ .00617 *)] 
a1 

Using  equation (112) with 
various  wing-winglet  conf 
in table V .  

igurations  can  be  evaluated,  and  these  are  presented 

Root  bending  moment  coefficient. - With o0 = 28.125  degrees, N = 9, 
equation  (59)  becomes 

Using  equation  (113)  with  the  an in table V, the  wing  root  bending  moment 
coefficient of the  various  wing-winglet  configurations  can  be  evaluated and 
these  are  presented in table V. 
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" Induced  drag  coefficient. - With  N = 9,  equation  (69) becomes 

9 9 9 
'Di = -v TA ( 3 [ 2 n (k)2 + 2 2 an" n* ; 4 Dnn*] 
-7 a1  a1 

n = l  n = l  n*=l 
odd  odd  odd 

where, w i t h  $o = 28.125 degrees and y angles  of 90 and 75 degrees,  n*(4/1~) Dnn* 
a r e  1 isted i n  t a b l e  11. Then , w i t h  y = 90 degrees, equation (1 14)  leads 
t o  

CD i 
= $k)2 [l ,03335 + ( .00333 + 2.821 91 ih - .33261 % - .03205 a a1  a1  a1 1 

+ .09628 *) + (-,00425 + 4.90862 &i + .19985 ii7- + .28517 *) 
a1  a1  a1  a1 (1 15) 

1 

+ * (.02387 + 7.18434 * +  .19903 *) + !!x (-.03036 + 8.96666 %)] 
a1  a1  a1  a1  a1 

An induced drag  expression  s imilar   to   that   of   equat ion (11 5 )  can be  made 
f o r  the y = 75 degrees configuration by using the Dnn* coe f f i c i en t s   o f   t ab l e  
I1 w i t h  y = 75".  Induced  drag  coefficients computed  from equations  (114) 
and (1  15)  are presented i n  tab1 e V .  

The drag  eff ic iency  factor  e i s  

This drag   fac tor  e i s  given i n  t ab l e  V as  determined from the l i f t  and drag 
coefficient  parameters l isted i n  t ha t   t ab l e .  

Ratio  of  Induced Drag of Planar-Wing  Winglet t o   t h a t   o f   F l a t  
Planar Wing with Equal Lift and  Root Bending Moment 

A measure o f  the eff ic iency  of  a wing-winglet  configuration i s   t o  
compare the configuration w i t h  a f l a t   p l a n a r  wing  w i t h  the same l i f t  and root 
bending moment a s   t h a t  o f  the wing-winglet. The e f f i c i e n c y   i s  measured i n  
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terms of induced drag. Let subscript p denote a f l a t   p l a n a r  wing. Then 
the induced drag is  

where the second  equation i s  the induced drag  of the wing-winglet  configura- 
t i o n .   I n   r a t i o  form 

The rat io   of   root   bending moment coef f ic ien ts   g ives  

For the f l a t  planar  wing 

where ncp is  the spanwise center of pressure along the semispan.  For the 
condition of  equal 1 i f t  and equal  bending moment, bp/2Se,  according t o  
equation  (118), must be 

and the d rag   r a t io  from equation  (118) becomes 

The ra t io   o f   a spec t   r a t io   o f  the f l a t   p l a n a r  wing t o   t h a t   o f  the wing-wing le t '  
i s  
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When sur face   a reas   a re  the same, f r i c t ion   d rag  will remain about  equal. 
W i t h  the condition Sp = Se 

then the drag   ra t io  is  

eff ic ient  i n  terms of  drag, i t  
nonplanar  wings.  Also the e l l  
the e l l i p t i c  wing 

serves a s  a  good 
i p t i c  w i n g  i s  ana 

Flat   p lanar  e l l i p t i c  w i n g .  - Since the e l l i p t i c  wing i s  the most ." 
standard  for comparison w i t h  

l y t i c a l l y  the simplest. For 

- 4 
ucp 3.rr ep = 
" 

then from equations  (123) and (124) 

P 

Values of these r a t i o s  have  been computed using the da ta   o f   t ab le  V .  
Results are shown i n  t a b l e  VI. 

Flat   p lanar   rectangular  wing. - Another  standard  for  comparison is  t o  
compare the nonplanar wing w i t h  a f l a t   p l a n a r  wing having the Same chord 
d i s t r ibu t ion .  In the present problem, the nonplanar  wing-winglet has a 
rectangular  shape. For f la t   p lanar   rec tangular   wings ,  i t  i s  convenient t o  use 

- 1 
eP - 1+6 

45 



CL-. = ZITAD ap  Ap + 2kp(l  + r) 

where, from equation  (286)  of reference 6 

6 = .01453 loge [l + ( -52  E)’ + (-26848 E ) ~  + ( -07  t)”Ip A A A (129) 

(130) T = .lo467  loge [l + .385 + (-19167 - ) 2 ]  
A A 

k P  

where the subscr ip t  p i nd ica t e s   t ha t  the A and k a r e   f o r  the f l a t   p l a n a r  
rectangular wing.  The value  of b= (AP + 3.79)/(Ap + 1.895) i s  given i n  equation 
(24) .  Based on the analyt ical   data   of  the rectangular  wing (ref. 6 )  , the 
spanwise center of pressure can be formulated  as 

1 1.5573 
UCp - 2 - A 

- 
(E + A + 20.6) 

P 

In a squared  fo’rmulation 

2 .25 An + 2.183 
‘cP Ap + 12.121 

Inse r t ing   t h i s  ncp i n  equation  (123)  leads  to a quadratic  equation  in A p .  
T h u s  

A ‘mbr A, + 12.121 f =  l 6  (r)’ .25 Ap + 2.183 

hence 
Cmbr 

Ap2 + c8.732 - 64 - 775.744 (-) A = 0 
CL 

Thus ,  w i t h  a computed nonplanar wing value  of Cmbr/CL f o r  a given  aspect 
r a t i o  A, the equivalent  planar wing Ap i s  obtained by solving  the  quadratic 
equation  (133). With Ap known, ep i s  determined from equations (127)  and 
(129). Then the drag  ra t io   is   determined from equation  (124).  Values  of 
these   d rag   ra t ios  have been computed using the data   of   table  V w i t h  results 
shown i n  t a b l e  VI. 
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A -+ Q). - As aspect   ra t io   approaches  inf ini ty  the wing c i r cu la t ion  
becomes d i r e c t l y  

” 

cv 2r - 2nac 

t h e n  s i m i l a r l y   t o  the formulation o f  equation  (54) and (56) 

For the planar-wing  winglet, these equations become 

Then f o r   t h e  A + m rectangular wing w i t h  winglet  chord  equal t o  wing  chord 

CL, = 27r [cos ($0 + (1 - cos ($0) (cos y + :,cos y] 
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The rat io   of   equat ion  (140)   to  (139) gives the bending moment t o  l i f t  r a t i o  
a s  

The d rag   r a t io  g i v e n  i n  equation  (124) i s  the product  of the aspect 
r a t i o  and the drag   e f f ic iency   fac tor   ra t io .  As A -f m ,  the solut ion o f  equation = 

(1 33) gives 

Cmbr 
= (8 - )2 

CL 

where c,br/cL i s  g iven  i n  equation  (1 41 ) . For a planar  rectangular wing 

L n  n = l  
odd 

For the  nonplanar wing the   d rag   e f f ic iency   fac tor  i s  

where C D ~ / C I ~  i s  obtained from equation  (114). The A -+ m an coe f f i c i en t s   a r e  
presented i n  equation (96) .  Combining these equat ions   resu l t s  i n  

m m m 

9 e 

1 + 1-cos 9 

+ cos ql0 

cos % 
= ( 1-cos $0 ) 2  Y 

m 

n= 1 
odd 

48 



where +y is  shortened  notation  for 

The  summation in the  denominator of equation (144) is a logarithmic  infinity. 
The Dnn*  summation in ratio  to  this  is  negligibly  small. Using the  an 

coefficients of equation (96), the  first  sumnation in the  numerator  becomes 

m m 

n=l 
odd 

r 
n=l 
odd 

c_ 

m 

2 cos : 4CL 
n=l 

n= 1 
odd 2 cos 2n $0 

n=l n l  
1 
2 + - (1 

Now 
m 

n= 1 
odd 

m 1 ‘Os 9n = 1 In lcot 91 , and 2 ‘Os 2n ‘Q = 2 1 In lcot $o[  

n=l n=l 
n 2 n 

odd  odd 
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which a r e  f inite va lues   for  > 0. Since these terms a r e  d iv ided  by 
i n f i n i t y  the expressions w i t h  the cosine summations a r e  hence zero.  Equation 
(144) now simplifies t o  

With equation  (141) inserted into  equation  (142)’ the planar   rectangular  wing 
a s p e c t - r a t i o   r a t i o   a s  A + c o  becomes 

Combining equations  (124), (146), and (147) the induced  drag r a t i o  parameter 

where $y = cos y + + /a .  Equation  (148) is the r a t i o   o f  the induced  drag Of a 
rectangular  planar-wing wing1 e t  a s  A -t OJ t o  the induced  drag  of a planar 
rectangular  wing of  equal  root bending  moment. 
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where 

1 
1 

p = 3 - 3T2 - (3T + T3)  COS y - 2T2 COS2y J 
The example c o n f i g u r a t i o n  has $o = 28.125 degrees. Then 

T = .13389 1 

P = 2.94622 - .40406 COS y - .03585 C O S ~ Y  J 

and equations  (148) and  (147) become 

Di = 7 (1 - 2$y + 34Jy2) 1 [l + (.01793 + .26778 COS ~ ) I / J , ] ~  
D i  p ( 1  + .13389 I J J ~  COS y ) 4  ‘ 

A Cmbr f = (8T)2 = *77779 [! ‘1 (+ ,13389 4JY cos y 
.01793 + ,26778 COS y)@y]’ 

Using  equations (1 51 ) through  (154) , numerical  values can  be determined. These 
values  are  presented i n   t a b l e  VII. 

An impor tant   wing-winglet   condi t ion i s   t o  have minimum d r a g   r a t i o   o c c u r  
when $/a i s  zero.   This means t h a t   t h e   d r a g  will remain a t   t h e   b o t t o m   o f   t h e  
drag  bucket a t   a l l  values o f  a ;  t h a t   i s ,   i n d e p e n d e n t   o f  lift. Minimum drag 
r e s u l t s  when the   cond i t i ons   o f   equa t ion   (149 )   a re   f u l f i l l ed .  When +/a = 0, 

‘Ymin D i  
degree  polynomial i n  cos y , given  by 

equals  cos y, then  solv ing  equat ion  (149)  for   cos y l e a d s   t o  a f o u r t h  

2T2cos4y + (9T-2T2 +T3) cos3y - (3T-6T2  +T3f  c0s2y + 3(1-T2)cos y - 1+T2= 0 



- 

For the  example configuration $o = 28.125  degrees,  then T = .13389, 
and the  solution  of  equation  (155)  for  cos y r e s u l t s  i n  

COS y = .32987 

y = 70.74  degrees 

" Di - .33705 
D i  p 

i n  which Di/Dip and Ap/A are  evaluated  with $y = cos y in  equations  (153) 
and (154). 

Slender wing w i t h  y = 0. - Since Dnn* coef f ic ien ts   a re   zero  when y = 0, 

then from equations ( g o ) ,  , (92) ,  and (93)   for   the  s lender  w i n g  

For y = 0,  equat ions  (55) ,   (59) ,  and (66) w i t h  equation  (157) can be wri t ten as 

e = l + k 2 (  
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where 
2 k o  = - (+o -sin +o cos +,I 
lr 

m n+l 

n=3 
odd 

m 

n= 3 
odd 

As aspect  ratio  approaches  zero,  qcp becomes 4 / 3 ~ ,  and ep = 1 ,  then equations 
(1 23) and (1 24)  f o r  A + 0 ,  y = 0, b u t  fo r   a rb i t ra ry   va lues  of  +o and $/a, 
become 

This  function  in  equation  (163)  results  in a drag  bucket  along $/a. Take the 
der iva t ive  o f  Di/Dip w i t h  respec t   to  $/a, set to   ze ro ,  and so lve   for  $/a, 

gives 
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Inserting  equation  (164)  into  (163)  gives the equat ion  for  minimum drag as  

where kl  and k2 a r e  functions of only $o, a s  can be seen i n  equation (161 ). 

W i t h  ,$o = 28.125 degrees, the ko,   k , ,   k2 from equation  (161)  are 

ko = .047835, k l  = .006857, k2  = .009080 

then from equations  (164),  (165), and (162) 

= -2.25573 

Di = .95084 
D i  p 

F Cmbr 
= .89868, - - 

CL 
- .lo058 

For the  condition y = 0, $o = 28.125 degrees,  values from equations 
(157),  (158),  (159),  (160),  (162), and (163)  are presented i n  t ab les  V and 
VI. 
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RESULTS AND DISCUSSION 

Load-Line and Slender Wing Theory 

Analytically,   these  are two-dimensional theories .  That i s ,  only  induced 
ve loc i t ies  normal to   the   sur face  i n  the yz-plane  enter  into  the  solution. 
Longitudinal  effects  enter the problem only  insofar  as wing chord d i s t r ibu t ion  
i n  the load-line method influences the solution. The load-line  solution i s  
fo r  wings w i t h  the  one-half   chord  l ine  straight or unswept i n  the  yz-plane. 
However, swept wing parameters,  developed i n  a following  section,  approximate 
swept planform  geometry e f fec ts   for   so lu t ion  w i t h  load-line  theory. Because 
of  the  quasi two-demensional nature of these  theories ,   they  are   ideal ly  
sui ted  for   the more complex type  of  loading  solutions  (such  as,  taking  into 
account  nonplanar  effects,   nterference  effects of mu1 t iplanes , fuselage-by- 
image methods, wing-in-jet,  ground,  tunnel  walls,  or  passing t h r o u g h  t r a i l i n g  
vort ices   of   another   a i rcraf t ) .  T h i s  i s  because the  load-line method i s  quasi 
two-dimensional,  hence, i n  many cases,  the  additional  normal-to-surface  induced 
velocity due t o  the added configuration  likewise may  be determined f o r  two- 
dimensional  flow.  Because the boundary condi t ions   a re   sa t i s f ied   a t   a l l   po in ts  
w i t h  the  load-line and slender wing theor ies ,   the  spanwise  loading can be 
predicted  accurately  for  any complex spanwise  distribution  of wing surface 
inclination  (such  as  winglet  toe-in  angles,  control  surface  deflections,  twist, 
induced angles due t o  other  wings,  fuselage,  wing-in-jet,  ground,  or  free 
vortex). The introduction  of  the  induced-angle  parameter I: of equation (24 )  
t ransforms  l i f t ing   l ine   theory   e f fec t ive ly   in to  a l i f t ing   sur face   theory ,   o r  
load-line  theory,   for  the  prediction o f  spanwise  loading  characteristics. The 
i n t e g r a t e d   l i f t  i s  accurate  since  the  definit ion  of k depended on this l i f t .  

Swept . - . . . . _"_ wing ap-proximation for  load-line  theory.  - Load-line  theory can be 
made appl icable   to  swept wings by a redef ini t ion of the   aspec t   ra t io  and wing  
chord distribution  parameters. From simple sweep theory  concept of  flow 
normal to  wing, the   e f fec t ive  aerodynamic  semispan  of the swept wing i s  
given by the  distance  along  the midchord l i n e  from wing root   to  wing t i p  
denoted by Sen. Then the   e f f ec t ive   a spec t   r a t io  and l i f t  parameters  are 
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Equation (1 67,) app l i e s   t o  a sweep angle   that   var ies   a long the span , such  as   that  
f o r  a cranked wing.  For a constant sweep angl e,  seA/se = cos A ,  then 

where A i s  the sweep angle  of the wing one-half  chord  line, 

In addi t ion   to   the  swept-wing parameters  of  equations  (167) and (1681, the 
swept wing needs a spanwise wing chord f a c t o r  which r e l a t e s  wing sweep angle 
t o  wing t a p e r   r a t i o .  Shown i n  figure 21 of  reference 9 is  a curve  of  taper 
r a t i o   a s  a function  of sweep angle. Wings w i t h  this sweep and t a p e r   r a t i o  
have approximately  elliptical  spanwise  loading  independent  of  aspect  ratio. 
This  curve was analyzed  for the present study w i t h  the r e s u l t s  

1 - sin A A = .375 + s in  A 

Equation  (169)  forms the basis  for  defining the equivalent  chord  distribution 
of  a s t r a i g h t  wing  which will   give a spanwise  loading d i s t r i b u t i o n  s imi l a r  t o  
t h a t  o f  the swept wing.  The e f f e c t i v e  chord d i s t r ibu t ion  i s  of  the form 

where the center  of  spanwise  chord  distribution i s  
1 

occ = 1 o do C 

0” 
s t r a i g h t  

e l l i p s e  taper 1 + 2A 
3 + 3A 

- - - - - 
37r 
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when 0 = 1, C = c t ,  and, when CY = 0, c = Cy.  These v a l u e s   a r e   i n s e r t e d   i n t o  
equation  (170),  and a r a t i o  made; then  equation  (170) becomes equation  (169) 
when he = .375. Equations  (1  67) , (168) , and  (1  70)  provide  swept  wing  load- 

l ine  theory  rep lacement   parameters  which  are  read as 

f o r  A i n   l o a d - l i n e   t h e o r y ,   s u b s t i t u t e  sen A/Se o r  A/cos A 

f o r  CL i n   l o a d - l i n e   t h e o r y ,   s u b s t i t u t e  SeACL/Se o r  CL/COS A (172) 
f o r  C/Cav i n  l oad - . l i ne   t heo ry ,   subs t i t u te  (C/Cav)e o f   e q u a t i o n  

The chord  condi t ions  g iven i n  equat ion  (170)  provide an i n t e r e s t i n g  

r e l a t i o n s h i p   f o r  swept  wings  which  have e l l i p t i c a l   a d d i t i o n a l  spanwise  loading 
d i s t r i b u t i o n .   F o r   t h e  unswept e l l i p t i c   p l a n f o r m ,  (c/caV), = (4 /1~ ) (1  -0 ) . 
Then t h e   c h o r d   d i s t r i b u t i o n   f o r  swept  wings i s  

2 1/2 

For   the  chord  d is t r ibut ion  g iven  in   equat ion  (173) ,   the  swept-wing  aerodyanmic 
c h a r a c t e r i s t i c s   a r e   g i v e n   b y   t h e   e l l i p t i c   w i n g   r e s u l t s  of  equation (46), 
provided A i s  replaced  by  A/cos A and CL by CL/COS A .  

Rectangular Wing Winglet, = 51~/32, xwo = 1 

through VII. 

wing o f  equal 

w i  ng-wi  ngl e t  
and i n f i n i t l y  
rec tangu lar  p 

Example s o l u t i o n s   f o r   t h e  aerodynamic c h a r a c t e r i s t i c s   o f   t h i s   c o n f i g u r a -  
t i o n   a r e  shown in   t he   p rev ious   chap te r .   Resu l t s ,   i nc lud ing   i n f l uence  
c o e f f i c i e n t s  and f o r c e  and moment coe f f i c i en ts ,   a re   p resen ted   i n   t ab les  I 

Examination o f   t a b l e  VI shows t h a t ,  compared t o  a p l a n a r   e l l i p t i c  

lift and equal  wing  root  bending moment, t h e   d r a g   r a t i o   f o r   t h e  
i s  about 5% l e s s  when A -f 0, about   10%  greater   for  A = 10.94, 
g r e a t e r  as A -+ QD. Comparing w i t h  a p lanar   w ing   w i th  same 

lanform shows d e f i n i t e   d r a g   b u c k e t s   a t   a l l   a s p e c t   r a t i o s .  The 
i n d u c e d   d r a g   r a t i o ,   r a t i o   o f   a s p e c t   r a t i o ,  and  wing  root  bending moment data 
o f  t a b l e s  VI and VI1 are  presented i n   f i g u r e  2 as f u n c t i o n s   o f   w i n g l e t   t o e - i n  
angle. The i n d u c e d   d r a g   r a t i o   c u r v e s   o f   f i g u r e   2 ( a )  have drag  buckets   wi th  
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respect to   toe- in   angle .  These buckets are   shal low and wide f o r  the low 
aspec t   r a t io  wing b u t  become deep and narrow as   a spec t   r a t io  becomes la rge .  
A t  minimum induced d rag   r a t io ,  the comparative  reduction  of  induced  drag i s  
about 4% a t  A -+ 0, 11% a t  A = 10.94,  and 66% a t  A -+ -. The posit ion  of the 
drag  bucket  along the $/a ax i s  i n  figure 2 ( a )  i s  strongly  influenced by the 
winglet dihedral   cant  angle y. I t  i s  also  inf luenced by the r a t i o   o f  winglet 
chord t o  wing chord. T h i s  c h a r a c t e r i s t i c  i s  useful for   conf igura t ion  design 
s ince ,  when a value  of $/a and winglet chord  are   specif ied,  y i s  def ined 
by the minimum induced drag  condition. 

Curves  of r a t i o s  of wing root bending moment coe f f i c i en t  t o  l i f t  
coef f ic ien t   a re   p resented  i n  figure 2 ( b ) .  These values  apply  to both the wing- 
winglet and planar-wing  configurations  since the condi t ion   for  comparison was 
t h a t  l i f t  and root  bending moment be the  same. The Cmbr/CL r a t i o  becomes 
smal le r   as   aspec t   ra t io  and toe-in  angle  decrease and as  dihedral   cant  angle 
increases.  The a spec t   r a t io  of  the planar  rectangular wing  i n  terms of   that  
of the rectangular  wing-winglet  i s  g iven  i n  figure 2 ( c ) .  This i s  the  aspect  
r a t i o  the planar wing must have i n  o rde r   t o  give the same l i f t  and 'wing bending 
moment as  the wing-winglet w i t h  h igher  a s p e c t   r a t i o .   I t  can be r eca l l ed   t ha t  
the wing-winglet  a spec t   r a t io   de f in i t i on  is  based on t o t a l  spanwise  distance 
along wing and wing le t  and to ta l   sur face   a rea  which includes w i n g  area plus 
winglet area.  The values  of figure 2(c)  correspond  through A ,  $/a, and w i t h  
those of  f i gu res   2 (a )  and ( b ) .  Figure 3 results from cross   p lo t t ing  the values 
of figure 2 .  The decrease i n  wing root bending  moment coe f f i c i en t   a s   t he  
winglet  approaches the up posit ion i s  shown c l e a r l y  i n  f igure  3.  For A = 

10.94 a t  y = 90 degrees the root bending moment i s  4.3% less, however,  induced 
drag   ra t io  i s  3.4% more t h a n   t h a t   a t  y = 0 degrees. The planar  rectangular wing 
induced  drag Dip  is not a constant i n  the Di/Dip r a t i o  bu t  var ies  w i t h  the 
planar wing a spec t   r a t io  Ap. The value of A p  was spec i f ied  under the 
condi t ions  that  l i f t  and w i n g  root bending moment of the planar w i n g  equal 
t h a t  o f  the nonplanar wing .  Curves of only the rectangular wing winglet 
induced  drag versus wing root  bending  moment are  presented i n  figure 4 .  The 
induced-drag  parameter i s  e-1 = .rrA C D i / C L 2 y  a spec t   r a t io  i s  10.94, and the l i f t  of 
the various  configurations is  the same. As shown i n  figure 4 ,  a t  low values of 
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root  bending moment, the induced drag i s  marginally less a t  h igh  values of 
dihedral cant angle. The f l a t  winglet  y = 0 configuration  curve  almost 
envelopes the higher y angled curves. However, the y = 0 curve i s  characterized 
by large  negative  values  of $/a which  become less negative as angle  of 
attack increases resulting i n  l a rge r   roo t  bending moment coef f ic ien ts .  

A deep and narrow drag bucket means t h a t  induced drag i s  s e n s i t i v e   t o  
changes i n  $/a. T h u s ,  when a design  toe-in  angle i s  specified, any change i n  
angle   o f   a t tack   or  1 i f t  w i  11 a1 ter the $/a r a t i o  and induced drag rises up 
the side o f  the drag bucket. In this regard, the ideal would be zero  toe-in 
angle; t h e n  the $/a r a t i o  remains the same a t  any l i f t .  The dihedral  cant 
angle y has a va luable   asse t  i n  t h a t  i t  influences the posi t ion  of  the induced 
drag bucket along the $/a axis .  Then y can be chosen such t h a t  minimum 
induced drag r a t i o  can be obtained w i t h  m i n i m u m  $/a r a t i o .  Examination of 
figure 2(a)   ind ica tes   tha t ,   fo r  this wing winglet configuration, the minimum 
induced d rag   fo r  $/a = 0 occurs a t  y = 71 degrees  as A +- my and a t  Y = 90 
degrees   for  A = 10..94. In view of this cha rac t e r i s t i c  a  good A = 10.94 
rectangular wing wingle t  has y = 90 degrees, $/a = 0, and minimum induced 
drag. For  example, a designer has  proposed  an  aspect r a t i o  equal t o  nine 
planar  rectangular wing,  and asks if drag  can be reduced without   a l ter ing 
wing root bending moment.  From f igure 2 (c ) ,  when Ap = 9 ,  $/a = 0 ,  = 90, 
then A = 10.94. The bending moment coe f f i c i en t  from figure 2 ( b )  i s  Cmbr/CL = 

,1041 w h i c h  l eads   t o  the same root bending moment a s   t h a t   o f  the planar 
rectangular wing.  The induced d rag   r a t io  from figure 2 ( a )  i s  Di /Dip  = .899. 

Thus ,  the designer has an al ternat ive  configurat ion which has  10.1% less 
induced drag, the same wing root  bending moment, and equal  surface  area.  
Since surface a reas   a r e  the same, f r ic t ion   d rag  i s  approximately the Same 
fo r   p l ana r  w i n g  and wing winglet  configurations. This wing wing le t  config- 
urat ion i s  w i t h  winglet  s ta r t ing  a t  = 5 ~ / 3 2  span s t a t ion .  The effect of 
other   winglet   s izes  needs t o  be inves t iga t ed   fo r   e s t ab l i sh ing  an optimum. 

The swept wing approximation  equations  can be app l i ed   t o  the rectangular  
wing winglet  example, In the rectangular wing solution,  (c/cav)e of  equation 
(170) was uni ty .  Then 
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where occ i s  given i n  equation  (171).  Inserting  equation  (174)  into  equation 
(1 71 ) and sol v i n g  f o r  occ gives 

1 1 - sin A 
occ - 

- 
2 tanh-'sin A 

- 
2 sin A 

then equation  (1  74) becomes 

c= (tanh-' sin A ) - '  sin A 
Ca v 1 - sin A + 2 lo1 sin A 

where A i s  the half  chord l ine sweep angle. A s  an example w i t h  A = 30 
degrees 

1.8205 
&=-I 

which is  not a s t ra ight- tapered wing.  However, a mean t a p e r   r a t i o  i s  
approximately h = 0.29. From equation  (172) w i t h  A = 30 degrees and 
A = 10.94 the swept wing  a spec t   r a t io  i s  A = 9.47, and swept w i n g  l i f t  
coef f ic ien t  i s  0.866 times tha t   o f  the rectangular wing wing le t .  Thus ,  i n  
this example, the A = 10.94  rectangular wing winglet   resul ts   of  figures 2, 
3 ,  and 4 apply  equally  to a 30 degree sweptback wing  winglet  of  aspect 
r a t i o  9.47, w i t h  approximately a t ape r   r a t io   o f  0.29. 

CONCLUDING REMARKS 

A goal f o r  the nonplanar wing loading  theories  developed i n  the 
present report  was t o   s a t i s f y  boundary conditions  of the wing ana ly t ica l ly  
a t   a l l   p o i n t s .  This goal was a t ta ined  by Fourier  analyses which permits 
integrat ion  of  wing  chord  and wing inc l ina t ion  boundary conditions which 
specify no flow  through the wing.  The nonplanar  load l ine ,  slender wing ,  
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e l l ip t ic  wing,  and i n f i n i t e   a s p e c t   r a t i o  limit theor ies  have proved t o  be 

useful too ls   for   appl ica t ions  i n  loading  aerodynamics. They give l i f t i n g  
surface  accuracy w i t h  l i f t i n g  l ine theory simplicity, t h a t  i s ,  they remain 
quasi  two-dimensional  solution  methods.  Because the boundary condi t ions  are  
s a t i s f i e d   a t   a l l   p o i n t s ,  the spanwise  loading  circulation  can be predicted 
accura te ly   for  complex spanwise  distribution  of  angle  of  at tack such a s   t h a t  
due t o  winglet o r  control   surface  def lect ions,  wing twist, induced  angles by 
mul t iw ings ,  multiwinglets, ground,  walls, j e t ,  or   fuselage.  Because of the 
quasi  two-dimensional  nature  of these theor ies  they a r e  well suited f o r  
these complex type of  loading  solutions,  since, i n  many cases ,  the induced 
angles normal t o  the surface due t o  the added configurat ions  are  likewise deter- 
mined f o r  two-dimensional  flow.  Force  and moment coefficients  of  nonplanar wings 
involve  integrations  along  the  nonplanar  surface  of  loading  circulation  vectors 
r e l a t i v e   t o  the surface.  Equations  for  nonplanar wing l i f t ,  r u n n i n g  wing 
bending  moment, r o l l i n g ,  and induced  drag  coefficients  are  developed. The 
nonplanar wing induced  drag  coefficient i s  equal t o  the planar wing induced 
drag  expression p l u s  a summation of  products  of wing c i rculat ion  Fourier  
coe f f i c i en t s  and nonplanar  induced  drag influence coe f f i c i en t s .  These 
influence  coefficients  are  functions  of  the  nonplanar  curve  of  the wing b u t  
a r e  independent of any o ther  wing geometry  parameter. Swept wing parameters 
a r e  approximated for wing  chord and aspect  ratio. .  These a r e  used i n  the load 
l ine method for obtaining  nonplanar swept wing solut ions.  

Example appl icat ion o f  these   theor ies  have been made f o r  a rectangular  
wing w i t h  wingtip winglets. In this example configuration the winglet  extends 
from  span s t a t i o n  .882 t o   1 ,  and winglet  chord  equals wing chord. The th i r ty -  
degree swept wing planform  equivalent  to the rectangular wing has a t ape r  
ratio  of  about  0.29. Compared w i t h  a planar  rectangular wing of  equal l i f t  
and root  bending moment, the wing le t  wing  has minimum induced drag  ra t ios   of  
.948, .869, and ,336 a t   a spec t   r a t io s   o f  0,  10.94, and 00, respect ively.  The 
study of this  example shows t h a t  there i s  just a deep a drag  bucket w i t h  
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winglet  planar, b u t  w i t h  nega t ive   def lec t ion ,   as  w i t h  the wing le t  up a t  h i g h  
dihedral   cant  angle.  However, i t  was found tha t   d ihedra l   can t   angle  has a 
va luable   asse t  i n  t h a t   f o r  the optimized design configuration the drag a t  
the bottom of the drag bucket can be r e a l i z e d   f o r  any wing angle   of   a t tack 
o r  1 i f t  , whereas f o r  the planar  winglet the drag rises u p  the side of the 
drag bucket as   angle   o f   a t tack   increases   o r   decreases .  

Vought Corporation Hampton Technical Center 
Hampton, Virginia 23666 

March 21 , 1977 
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TABLE I. - Ln*w COEFFICIENTS  FOR  EQUATIONS (41) AND (71) OF 

PLANAR-WING  WINGLET  WITH bo= 51~132 AND M=15 

' I  1 .01931  -13347 -. 11359  .04958  .03096  .01885  .01361 
3 -.04873  -.16124  -.lo834  .03594  .02439  .01516 .01104 
5  .04879  -.05402  -.09461  .01476  .01390  .00921  .00687 
7 .02698  .07104  -.06937  -.00490  .00349  .00319  .00261 
9  -.02714  .06417  -.03415  '-.01567  -.00341  -.00101  -.00042 

11 
1 
3 
5 
7 

- -.02089 -.01173 .00316 -.01888 -.00542 -.00256 -.00163 
.00066 .08511 -.06993 .03114 .02046 .01291 .00951 

-.02812 "11212 -.06670 .02232 .01600 .01033 .00769 
.03297 -.02911 -.05830 .01264 .00891 .00627 ,00473 
.01538 .04714 -.04294 -.00384 .00192 .00202 .00173 

~ ~ . . ." ~. ... ~ _ -  

.01795  .03687  -.02156  -.01048  -.00262  -.00086  -e00039 
-.01042  .00110  -.00982  -.00381  -.00186 - . O O 1 2 O  

TABLE 11. - n*p  Dnn*  COEFFICIENTS  FOR  EQUATIONS (69) AND (93) 

90 1 
3 
5 
7 
9 

11 
75 1 

3 
5 
7 
9 

11 

OF  PLANAR-WING  WINGLET  WITH $0 = 5 ~ / 3 2  

I - 

1 3 5  7  9 11 

.03335 .00666 -.00167 -.01243 -.06192 -.lo534 
-.00333 -.17809 -.16927 -.05646 -.02895 -.06658 
-.00258 -. 16334 -.09138 .08085 .11343 .03307 
.03630 .02441 .11900 .18434 .11512 -.00789 
.03156 .12523 .17174 .08391 -.03334 -.07625 

-.02442 .06277 .04171 -.11282 -.16333 -.02769 
.02254 .01464 .00887 -.00752 -.04600 -.06860 

-.02833 -.11801 -.09743 -.03368 -.02510 -.04331 
-.02362 -. 10743 -.05579 .05572 .06810 .OI018 
-02184 .01044 .07264 .11569 ,06939 -.01221 
.01822 .08039 .lo960 .04817 -.02089 -.03748 

-.01661 .04548 .02751 -.07520 -.09798 -.00506 

. - - ~- ~~ ~~ 

- "- ~ 

8 
" 

- 
.01221 
.00993 
.00624 
.00246 

-. 00025 
-. 00135 

.00858 

.00696 

.00433 

.00165 
-. 00025 
-. 00100 
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TABLE 111. - n* %,,*COEFFICIENTS FOR  EQUATIONS (39) AND (87) OF 
IT 

RECTANGULAR  WING  WINGLET  WITH (P, = 5~/32 AND xw0 = 1 

1 
. 

.03511 

.01535 
,02287 
.06097 
.03951 
-. 04557 

- 
3 5 7  9 11 

. 

-.06588 -.04584 .00025 -.05336 -.12659 
-.32053 -.22541 .01423 -.00065 -.13283 
-.30001 -.09515 .20900 .15731 -.04113 
-.02873 -21046 .32421 ,12296 -.08051 
.15523 .31146 .14626 -. 12323 -. 14249 
.11283 .14343 -.17091 -.34193 -.06549 

~~ 

75 1 

.01968  .lo354  .19886  .08172 - ,07742 -. 07450 9 

.03396  -.02045  .13428  .20153  .06996  -.05948 7 

.01103  -.19751  -.05132  .13694  ,08803  -.03467 5 

.00757  -.20220  -.12487  .01266  -.01483  -.09166 3 

.02294  "04218  -.01601  .00123  -.04333  -.08389 

11 -.03292  .08485  .09031  "11774  -.20657  -.02172 

TABLE IV. - n*9Inn* COEFFICIENTS  FOR  EQUATIONS (39) AND (87) 
Tr 

OF  RECTANGULAR  WING 

1 3 5 7  9 11 

1 1  1  1 1 
3 

1/5  2.02857  8.93651  6.14748  5.59620  5.37314 5 
1/3  4.6  3.3809  3.17778  3.10390  3.06838 

1/9  1.03463  3.10900  7.15260  18.72562  12.46581  9 
1/7  1.36191  4.39105  13.68594  9.19620  8.22020 7 

11 1/11  .81368  2.44234  5.23103  10.19930  23.98962 
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TABLE V .  - EXAMPLE  LOADING  CHARACTERISTICS  SOLUTIONS OF 

Y ' y  

deg 
-1 90 

a 
- 

-.25 

0 

1 

75 -1 

-.5 

0 

0 

-1 
-1.25 
-2 

-2.25r 

r 

0 

66 

A 

+ o  
10.94 

+ m  

10.91 

+ o  
10.91 

- + m  

+ o  
10.91 
+ m  

+ o  
10.94 
+ m  

+ o  
10.94 
+ m  

+ o  
10.94 
+ m  

+ o  
10.94 
10.94 
+ o  
10.94 
+ m  

+ o  
10.94 
+ m  

RETANGULAR WING WINGLET WITH +o = 5aj32 AND xwo = 1 

al/a  a3/al  a5/a1  a7/a1  ag/a 
~~ 

.8761  -.0978  -.0634  -.0168  .005€ 

.2480  -.1378  -.2178  -.lo59 .0127 
3.055/A -.3508  -.6666  -.5449 "2295 

.2640  -.0168  -.1124  -.0569 .0087 

.9217  -.0463  -.0317  -.0057 .0013 

.2690  .0236  "0772  -.0405  .007r 
3.528/A .0370 -. 1753 -. 1550 .~ -.036€ 

.9672  .0003  -.0029  .0043 -.0033 
~ "_ 

.2901  .1614  .0431  .0154  .002€ 

4/A 1/3 1/5" 1/7  1/9 
.9038  -.0786  -.0491  -.0210  .006r 
.2547  -.0889  "1754  -.0927 .011€ 

3.178/A  -.2395  -.5255  -.4329 ~. - -.174: . - - .. . 

.9261  -.0548  -.0342  -.0155  .004r 

.2652 -. 0135 -. 1091 -. 0610 ,0097 

3.414/A -.0467  "2814  -.2392  -.078: 
.9463  -.0311  -.0194  -.0100 .002! 
.2750  .0620  "0427  -.0293  .007€ 

3.650/A .1211 -. 0689 -.0705  -005: 
.8911  -. lo02 -.0645 -.0281 -.001€ 
.2475 -. 1037 -. 1905 -. 1015 . OlOC 

.2651 -. 0064 -. 1038  -.0582 .0085 
" .. " - .~ __ 

.9522  -.0412  -.0265  -.0116 -.0007 

.2706  .0260  -.0750  "0438  .008€ 
3.528/A .0371  -.1753  -.1550 -.036! ~ ~~ 

1 0 0 0 0 
.2914  .1556  .0405  .0139  .0071 

4/A 1/3  1/5  1/7  1/9 

Cmb, CDi 
'La a a m  e 

~~ - . . "~ 
~~~~ . 

1.339A .1304A ,2081  .8733 
4.263 .4261 .0217  .7094 

. - -~~ . .  

. " 

4.4100  .4546  .0195  .8440 
1.393A .1379A ,2219  .8857 

4.446  .4626  .0195  .8608 

." ~~~ - 

~ ~ ~ ~~ ~ _. 
1.447A .1453A .2418  .8769 
4.615  .4963  .0235  -7690 

~ . .  " 

1.387A -1372A  .2151  .9066 

4.348  .4421  .0203  .7877 

~ . 

- _ _ _ ~ _  ~~~ ". ." - 
~~ ~~ ~ 

1.416A  .1413A .2224  .9136 

4.460  .4639  .0194  -8674 

" 

1.441A  .1451A .2294  .9154 

4.581  .4905  .0198  .8964 

~ . ~ . . 

"" .. - - 
1.400A  .1407A  .2097  .9466 
4.251  .4320  ,0197  .7772 

~~ 4.553  .4863  .0189  .9272 
1.496A .1553A .2288  .9906 
4.648  .5045  .0191  .9577 

.5rA A/6 1/4 1 
5.005  .5779  .0230  -9236 



TABLE VI, - COMPARISON OF  INDUCED DRAG OF RECTANGULAR WING 

-. 5 

. -~ . " 

0 

-2.25t 
-2 
-1.25 
-1 

-~ ~ 

- 

~- 
0 

A 

+ o  
10.9r 
10.94 
- t o  
10.94 
- t o  
10.94 
+ o  
10.94 
+ o  
" 10.94 
+ o  
~ 10.94 
- t o  
10.94 
10.94 
+ o  

~~ ~~ 

. - " ~~~ ~ 

.___ 

. ~" 

1 0 ,y 
+ o  
10.94 

WINGLET, +o = 5~/32 , .  A,, = 1 ,  WITH PLANAR WING OF 

EQUAL L I F T  AND EQUAL WING ROOT BENDING MOMENT 

-~ ~~~~ . ". 

~ -~ 

~~ ~~~ 

.9466 .lo05 .8977 .9483 

.7772 ,1016 .9175 1.1804 

.9272 .lo68 1.0136 1.0931 

I .lo61  1 1 
- 

1 
" ~ ~ 

.9236  .1155  1.1842  1.2822 

I 4 
1 
1 r 
I 
I 

Compared w i t h  planar 
rectangular  wing 

eP Ap/A Di / D i p  

1 .8421 ,9642 
.9470 .7664 1.0231 
.9393 .8111 ,9028 

1 .8702 ,9825 
.9380 .8252 .8993 

1 .8965 1.0224 
.9334 .8768 1  .0642 

1 .8687 .9583 
.9412 ,7907 .9448 

1 .8846 .9683 
..9381 -8248 .8920 

1 .9007 .9840 
.9340 .8698 .9063 

1 .8977 .9483 
.9413 ,7900 .9568 
,9343 .8662 .8729 

1 .9572 .9664 
.9321 .8924 .8685 

- 

1 1  1 
.9236 1  1 
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TABLE VII. - COMPARISON  OF  INDUCED DRAG OF A -+ m RECTANGULAR 

WING  WINGLET, $0 = 51~/32, &o = 1 , WITH  PLANAR 

RECTANGULAR  WING OF EQUAL LIFT AND  EQUAL  WING 

ROOT BENDING MOMENT 

D i   / D i  p 
~~ 

-1.25  -1.00  -.50  -.25 0 .25  .50  .75  1 .oo 

90 
-8284  .4915  .3447  .3860  .6198  1.0501 75 

1.3505  .8362  .5000  .3468  .3818  .6098  1.0362 

0 .8337  .5000  .3780 .5971 1.0000 

Ap/A o r  (8 Cmb,/CL)2 . . . ~  . ~ ~~ 

90 .7639  .7708  .7778  .7848  .7918  ,7988  .8059 
75 .7580  .7785  .7989  .8192  .8394  .8596 

0 .7179  ,7778  .8924 .9471 1 .OOOO 
- 

MINIMUM DRAG AND CONDITIONS FOR MINIMUM DRAG, A + 
~~ Il_i - - .. ~. . . . . 

Y, deg 

-5582  .3294  .0709  -.1697 -.3761 -.5343  -.6338  -.6677 0 $/a 

105 90 75 60 45  30  15 0 70.74 

A P I A  
. lo96 .1109 .1121 .1133  .1143  .1150  .1154  .1156  .1125 Cmbr/CL 

.7691 .7870 .8047 .8210  .8364  .8457  .8524  .8547  .8095 

.3373  .3373 .3371 -3368  .3364 .3361  .3359 .3358 .3371 D i   / D i  p 
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Se 
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0 Y 

(a)  Single  nonplanar  vorticity  sheet.  

Z 

vorti   ci  t y  
sheet i 

" 0  ~ Y 
( b )  Multiple  nonplanar  vorticity  sheets. 

Figure 1.  - Coordinate  system i n  yz  plane o f  nonplanar  trail ing 
vor t ic i ty   shee ts  which extend  longitudinally una1 tered 
from zero   to   in f in i ty .  

69 

I 



1 .o 

.9 

. a  

Di 
D i  p 

.7 

.6 
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-7.2 -. 8 -.4 Lt 0 .4 .8 
( a )  Induced drag   ra t io .  

.a 

- Charac ter i s t ics  of  rectangular  wing winglet ,  $o = 51~/32, 
Xwo = 1 , compared w i t h  planar  rectangular wing o f  equal 1 i f t  
and equal wing root bending moment. Subscr ipt  p refers t o  
planar wing value 
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(b) Wing root   bending moment c o e f f i c i e n t   o f   e i t h e r  wing. 

F igure 2. - Continued 

CL 
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(c)  Aspect r a t i o  o f  planar wing.  

0 .4 

Figure 2.  - Concluded. 
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. loo . 1 04 .108'  ,112  .116 

Figure 3. - Minimum induced  drag as a func t ion   o f   w ing   roo t   bend ing  
moment c o e f f i c i e n t   f r o m   d a t a   o f   f i g u r e  2. The angle.y,  
i n  degrees, i s   t h e   w i n g l e t   d i h e d r a l   c a n t   a n g l e  measured 
from the  wing  plane. 
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1.28 

1.24 

1.20 

1.16 

1 
e 
- 

1.12 
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. .  
. lo2 . 1 04 .IO6 h h r  .IO8 .110 

CL 
Figure  4. - Induced drag  parameter e-1 = T A C D ~ / C L ~  o f  A = 10.94 

wing-winglet a s  a function  of wing root  bending moment 
coe f f i c i en t ,  from data  of  Table V .  

NASA-Langley, 1977 CR-2864 


